Spinal Crawlers: Deformable Organisms for Spinal Cord Segmentation and Analysis
نویسندگان
چکیده
Spinal cord analysis is an important problem relating to the study of various neurological diseases. We present a novel approach to spinal cord segmentation in magnetic resonance images. Our method uses 3D "deformable organisms" (DefOrg) an artificial life framework for medical image analysis that complements classical deformable models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. The DefOrg framework allows us to model the organism's body as a growing generalized tubular spring-mass system with an adaptive and predominantly elliptical cross section, and to equip them with spinal cord specific sensory modules, behavioral routines and decision making strategies. The result is a new breed of robust DefOrgs, "spinal crawlers", that crawl along spinal cords in 3D images, accurately segmenting boundaries, and providing sophisticated, clinically-relevant structural analysis. We validate our method through the segmentation of spinal cords in clinical data and provide comparisons to other segmentation techniques.
منابع مشابه
P9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملReview of studies on Mechanical Performance of Spinal Cord in Traumatic Injuries
Considering the extent of the disability caused by spinal cord injury and the increasing incidence of it, many attempts have been made to understand how this lesion is repaired. Most of the spinal cord injuries are traumatic injuries. The annual incidence of this damage is estimated between 15-40 cases per million people worldwide. Considering the extent of this incident, the need for study of ...
متن کاملImage Segmentation Using MRI Vertebral Cross-Sections
Computer Assisted Spinal Surgery requires the development of a 3-D image of a patient’s spine. A method is being developed to construct such a 3-D spinal image from axial MRI cross-sections, using a deformable template. This paper outlines techniques used to register the model with the patient data. First an algorithm based on symmetry of the anatomy is developed to determine the position and o...
متن کاملAutomatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view
Spinal cord segmentation is an important step in the analysis of neurological diseases such as multiple sclerosis. Several studies have shown correlations between disease progression and metrics relating to spinal cord atrophy and shape changes. Current practices primarily involve segmenting the spinal cord manually or semi-automatically, which can be inconsistent and time-consuming for large d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 9 Pt 1 شماره
صفحات -
تاریخ انتشار 2006